

Aral Sea Basin Transboundary Water Early Warning Bulletin

February – March 2020

UNRCCA

A need for production and periodic and timely issue of the Bulletin as an information product for timely collection and dissemination of information on water-related, environmental, and climatic situation in the Aral Sea basin with the purpose to prevent problems or disputes arising was addressed during a seminar on “Early Warning on Potential Transboundary Water Problem Situations in Central Asia”, which was held in the city of Almaty on 26th of September 2011. The states in the Aral Sea basin have expressed their support for such initiative in discussions with the UN Regional Centre for Preventive Diplomacy for Central Asia. The Central Asian states have repeatedly shown their interest in enhancing the regional capacities for early warning and preparedness to potential hazards.

The Bulletin is a resource, which provides all the Central Asian states and their international partners with improved capacity to monitor regularly the status of transboundary rivers and warn early of potential issues that require attention.

Four early warning bulletins will be issued as part of the Project in 2020. The format and content of the bulletins have been agreed with the client and with all organizations that provided source information. The first bulletin in 2020 contains the actual information on the Syr Darya and Amu Darya basins for February and the forecast for March.

Data sources:

- BWO Amu Darya and BWO Syr Darya – data on water resources, their distribution in time (day) and by river reach, operation regimes of reservoirs, inflow (planned versus actual) to the Aral Sea,
- CDC “Energy” – data on operation regimes of hydroelectric power stations (HEPS), electricity generation (planned, actual),
- Aral-Syrdarya BWA – data on lower reaches of the Syr Darya River (components of the water balance from the tail-water of the Shardara reservoir to the Northern Aral Sea),
- Open Internet sources - climatic information.

Digest of CA news for February

Source: cawater-info.net/news/index.htm

- © Uzbekistan and China discussed joint project cooperation in Afghanistan podrobno.uz
- © Satellite monitoring helps solving 50 sectoral tasks in Kazakhstan kazakh-tv.kz
- © Kazakhstan transfers aquifer territories back into the state's hands mk-kz.kz
- © A big wind station under construction in Sarysu district, Zhambyl province lenta.inform.kz
- © Kyrgyzstan proposes a glacier conference to its neighbors kp.kg
- © According to Kyrgyz deputy, 90% of water from the Kirov reservoir flows to Kazakhstan, this means that Kyrgyzstan accumulates water annually for them tazabek.kg
- © \$50 million green economy project is to be launched in Kyrgyzstan this year tazabek.kg
- © Tajik authorities look forward to receiving compensation from neighbors for water regnum.ru
- © Tajikistan reduces almost 2.5 times idle discharge from reservoirs regnum.ru
- © Tajikistan and UN discusses implementation of the National development strategy khovar.tj
- © WB allocates \$134 million for rehabilitation of Barki Tojik dialog.tj
 - The organizing committee of the International High-Level Conference on International
- © Decade for Action “Water for Sustainable Development”, 2018-2028 had a meeting chaired by the Prime-Minister in Dushanbe khovar.tj
- © António Guterres appoints Sezin Sinanoglu of Turkey as UN Resident Coordinator in Tajikistan khovar.tj
- © Turkmen-Afghan business-forum held in Ashkhabad turkmenportal.com
- © Major water users enlisted in Uzbekistan nuz.uz
- © Tashkent's authorities promised to ensure access for drinking water for all residents in 2020 uz.sputniknews.ru
- © Skolkovo's scientists will offer solutions on water treatment in Uzbekistan uz.sputniknews.ru
- © Uzbekistan will build two 200 MW solar stations uz.sputniknews.ru
- © Uzbekistan increased energy generation by 1.2% uzdaily.uz
- © Kazakhstan and Uzbekistan signed half a billion worth agreements orient.tm
- © “My Garden in the Aral Sea” Project on agro- and ecotourism mininnovation.uz
- © Turkmen-Afghan cooperation aspects discussed in Kabul mfa.gov.tm
- © Construction of power transmission line started in Afghanistan as part of CASA1000 afghanistan.ru
- © Zhanat Zhakhmetova assigned as Kazakhstan's Energy Vice-Minister lenta.inform.kz
- © WB will allocate \$30 million for drinking water supply in Dushanbe centrasia.org
- © Tajikistan will upgrade monitoring facilities at Lake Sarez kabar.kg
- © New energy grid will couple all regions in Turkmenistan orient.tm
- © Major tasks to be solved by the Agency for Implementation of Water Sector Projects identified uzdaily.uz
- © Joint transboundary water management and use in Central Asia discussed uzdaily.uz
- © Kazakhstan and Uzbekistan compare notes on water supply during the growing season lenta.inform.kz

- © Mirziyoyev holds a meeting on development of agricultural clusters [kun.uz](#)
- © European experts come up with suggestions on implementation of the Agricultural Development Strategy in Uzbekistan [review.uz](#)
- © Ministry of Energy drafts PSA with British Petroleum and SOCAR for development activities in the Aral area [kun.uz](#)
- © World small hydropower development report 2013-2019 issued by UNIDO [ekois.net](#)
- © UN calls on countries to address the climate change challenges jointly [korrespondent.net](#)
- © The water quality databank developed under UN auspices [khovar.tj](#)
- © UN targets small farm businesses [seeds.org.ua](#)
- © Kazakhstan and Kyrgyzstan hold negotiations on water and energy [ecogeo.gov.kz](#)
- © Why does USAID strive to control water supply in Central Asia?
[ritmeurasia.org](#)
- © Uzbek President is named person of the year 2019 [review.uz](#)
- © Tajik Prime Minister and company head Salini Impregilo discuss Roghun [centralasia.media](#)
- © Meeting of the partnership framework development program between Turkmenistan and the UN [arzuw.news](#)
- © On cooperation between the Uzbekistan's Ministry of Housing and Communal Services and the Scientific-Information Center of ICWC
- © Ocean Conference preparatory meeting held at UNHQ [turkmenportal.com](#)
- © Central Asian environmental challenges discussed in Brussels [lenta.inform.kz](#)
- © Head of Government holds fourth meeting of Dialogue on investment cooperation between Kazakhstan and European Union [avesta-news.kz](#)
- © Kyrgyzstan starts fulfilling obligations under the Paris Agreement [kabar.kg](#)
- © A new version of the Water Code of Tajikistan adopted [khovar.tj](#)
- © Ministry of Finance: Tajikistan will borrow for Roghun [tj.sputniknews.ru](#)
- © Tajikistan plans increasing export of electricity to neighbors
[centralasia.media](#)
- © Russian company will build HEPS on the Chatkal River just outside Tashkent
[fergana.agency](#)

Amu Darya River Basin

Actual Situation in February and Forecast for March

In February, the regulated flow of the Amu Darya River upstream of water intake to Garagumdarya is estimated at $2,701 \text{ Mm}^3$ (15% higher than the forecast), while the available usable river water resources estimated as natural, non-regulated river flow plus lateral inflow into the river and minus losses amounted to $1,906 \text{ Mm}^3$. The regulated flow in the section upstream of Garagumdarya is higher than the available usable water for two reasons: i) discharge from the Nurek reservoir adds 639 Mm^3 to natural flow, ii) about 800 Mm^3 (30% of river flow upstream of intake to Garagumdarya) is lost along the river.

River flow is expected in the amount of $2,998 \text{ Mm}^3$ upstream of intake to Garagumdarya in March. If we subtract drawdown of the Nurek reservoir (732 Mm^3) in March, then the natural river flow in this section will be $2,266 \text{ Mm}^3$ (89% of the norm – mean long-term flow).

According to UzHydromet's estimates, water content in the Vakhsh River is expected within 90-100% of the norm for the growing season 2020 (April-September). SIC estimates that water content in the Amu Darya River in the section upstream of Garagumdarya will be also within 90 - 100%; however, it can decrease to 70 – 75% of the norm in summer months (June, July).

By the beginning of February, the snow cover depth at Sary Tash weather station (Vakhsh River basin) is only 43% of the norm (on the same date last year snow was accumulated 20% more of the norm). Accumulation of precipitation and seasonal snow in mountains will continue till the beginning of April and this may change the situation for the better. The data on accumulation of precipitation in the Panj River basin is not available at UzHydromet.

Inflow to the Nurek reservoir was 533 million m^3 in February or 122% of the forecast. Water releases from the reservoir amounted to 1,397 million m^3 (115% of planned releases). The reservoir was drawn down to 6,870 million m^3 by the end of month. This is 97% of the volume planned in BWO Amu Darya's schedule. Water losses in the reservoir (estimated as balance discrepancy) amounted to approx. 2% of water volume in the reservoir. It is expected that in March 578 million m^3 of water will flow into the Nurek reservoir. The water volume in the reservoir will decrease down to 6,142 million m^3 , and water releases from the reservoir will be 1,339 million m^3 .

In February, inflow to Tuyamuyun waterworks facility (TMWF) was 1,016 million m^3 or 78% of the expected volume. The water accumulation plan in reservoirs of TMWF was fulfilled by the beginning of March: the water volume in the reservoirs was 4,171 million m^3 (102% of the plan) by the end of February. At the same time, water volume in the reservoirs decreased by 313 Mm^3 . Water releases from the reservoirs amounted to 631 Mm^3 – only 50% of those scheduled by BWO Amu Darya. Water diversion from the reservoirs amounted to 417 million m^3 (96% of the plan). Water losses in the reservoirs of TMWF (calculated as water balance discrepancy) are estimated at 274 Mm^3 , i.e. about 7% of water volume in the reservoirs by the end of February.

Inflow to TMWF is expected to be 1,366 million m^3 in March. TMWF reservoirs will be emptied and their volume will be 3,369 Mm^3 by the end of month. Water releases from the reservoirs are planned in the amount of 1,307 million m^3 .

Nurek HEPS generated 704 million kWh of electric energy in February. The discharge through turbines was $557 \text{ m}^3/\text{s}$, while the head was 229 m. Sterile spills were not observed.

In February, HEPS of the Tuyamuyun waterworks facility generated 23 million kWh; and, the head at HEPS was 20 m.

In February, water along the Amu Darya River was distributed unevenly: in middle reaches at Kelif g/s (section upstream of intake to Garagumdarya) – Birata g/s the water shortage was estimated at 90 Mm^3 (7% of the plan), and in lower reaches at Tuyamuyun g/s – Samanbay g/s the water shortage was 177 Mm^3 (78% of the plan). Water withdrawal was $1,338 \text{ Mm}^3$ in the first reach and 225 Mm^3 in the second reach.

Open channel losses were observed in middle and lower reaches of the Amu Darya River. Water losses amounted to 622 Mm^3 (23% of river flow at Kelif g/s) in the middle reaches and 229 Mm^3 (47% of river flow downstream of TMWF) in the lower reaches. The trend towards an increase in open channel losses was observed in the first reach: 1st ten-day period - 16%, 2nd ten-day period - 25%, 3rd ten-day period - 26%. The second reach showed the following: 1st ten-day period - 59%, 2nd ten-day period - 65%, 3rd ten-day period - 32%.

In February, flow of the Amu Darya River changed as follows by key gauging station: Kelif g/s – $2,701 \text{ Mm}^3$, Birata g/s (inflow to TMWF) – $1,016 \text{ Mm}^3$ (38% of flow at Kelif g/s), Tuyamuyun g/s (downstream of TMWF) - 631 Mm^3 (23%), and Samanbay g/s (inflow to the Large Aral Sea) - 107 Mm^3 (4% of flow at Kelif g/s).

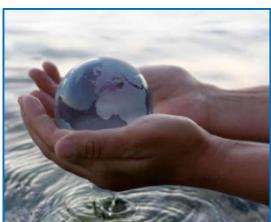
In March, water withdrawal will be increased to $1,953 \text{ Mm}^3$ in the first reach and to 605 Mm^3 in the second reach. River flow along the river will change as follows: Kelif g/s – $2,701 \text{ Mm}^3$, Birata g/s – $1,366 \text{ Mm}^3$, Tuyamuyun g/s – $1,307 \text{ Mm}^3$, and Samanbay g/s - 338 Mm^3 .

In February, inflow to the Large Aral Sea from the Amu Darya basin (flow from the river and collecting drains (collectors)) amounted to 158 million m^3 . 127 million m^3 were discharged from the Northern Aral Sea, and, thus, the cumulative inflow to the Eastern part of the Large Aral Sea was 285 million m^3 .

In February, the water level in the Eastern part of the Large Aral Sea varied within 27.5...27.6 m, the water surface area was 2.5...2.6 thousand km^2 , and the water volume was 2.4...2.5 km^3 . In the Western part, the water level was 21.74...21.81 m, the water surface area was 2.22...2.24 thousand km^2 , and the water volume was 32.41...32.63 km^3 . Evaporation from 1 km^2 of water surface of the Large Aral Sea was 0.035 Mm^3 in February.

It is expected that in March the total inflow to the Large Aral Sea will be 552 Mm^3 , including 355 million m^3 from the Amu Darya River and collectors and 197 Mm^3 as inflow from the Northern Sea. By the end of March, in the Eastern part of the Large Aral Sea the water level will be 27.7 m, the water surface area will be 2.82 thousand km^2 , and the water volume will be 2.79 km^3 . In the Western part of the Large Aral Sea the water level will be 21.83 m, the water surface area will be 2.24 thousand km^2 , and the water volume will be 32.7 km^3 . Evaporation from 1 km^2 of water surface of the Large Aral Sea will be 0.041 million m^3 in March.

The sections below show daily and ten-day data on climate and water management (reservoirs, HEPS, water distribution).

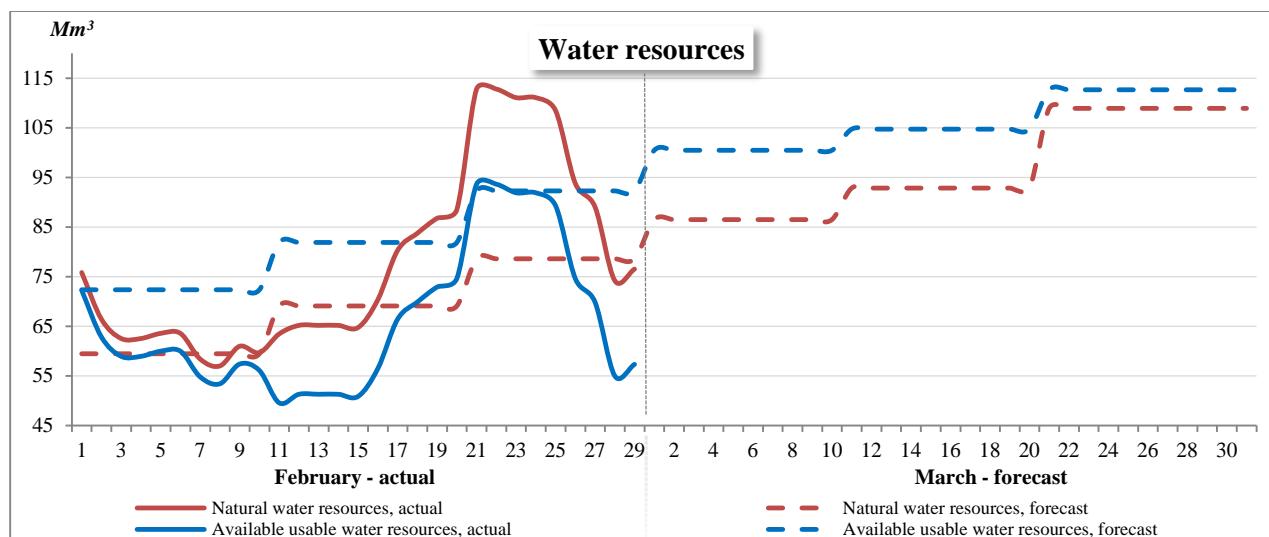


Climate

Weather station Riverhead	Location		
	Latitude	Longitude	Altitude above sea level, m
Kurgan-Tyube	37.82	68.78	429
Penzhikent	39.48	67.63	1015
Panj	37.23	69.08	363

Air temperature (T)

Station	Parameter	February			March		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Panj	T, °C	Forecast	7.00	7.00	10.00	12.00	14.00
		Actual	8.31	6.84	11.73		
Kurgan-Tyube	T, °C	Forecast	8.00	8.00	11.00	12.00	14.00
		Actual	8.42	7.30	11.88		
Penzhikent	T, °C	Forecast	5.00	3.00	7.00	8.00	11.00
		Actual	5.62	2.44	7.51		

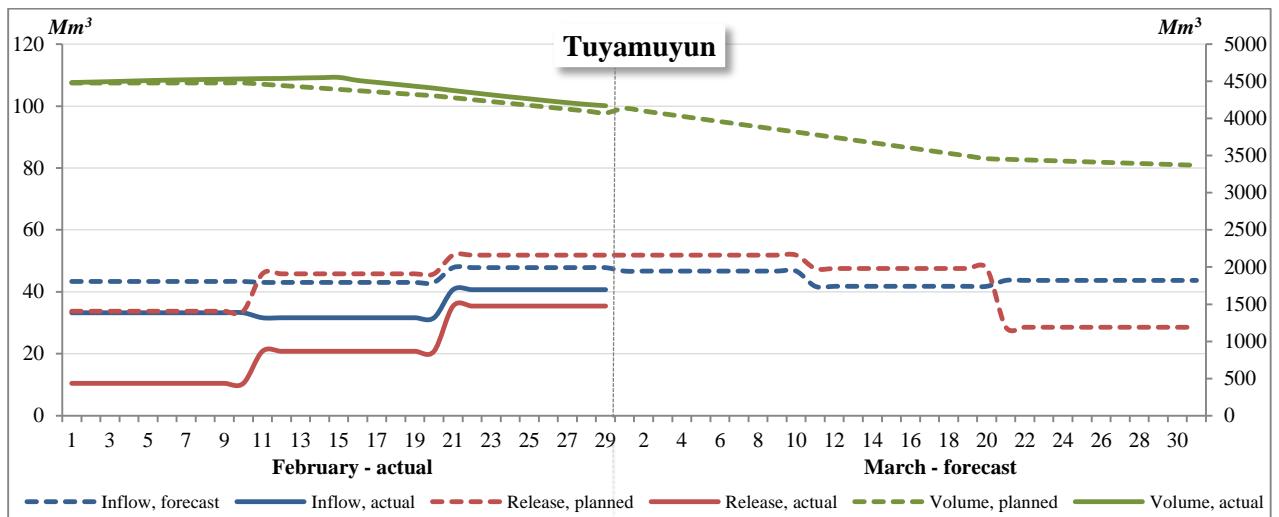
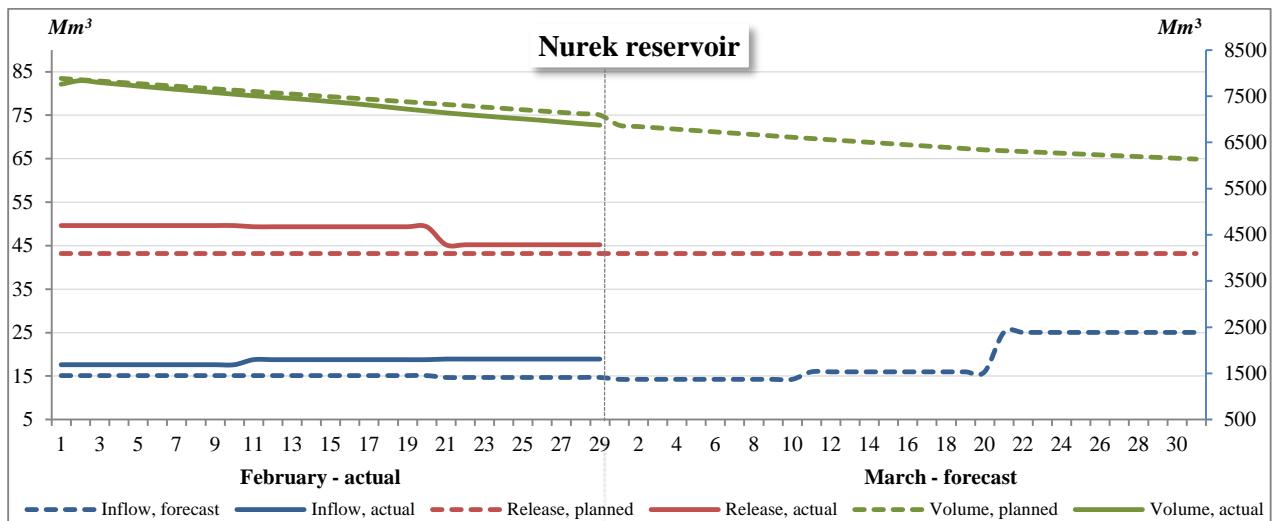


Water resources

Object
Amu Darya
Nurek reservoir
Atamyrat gauging station

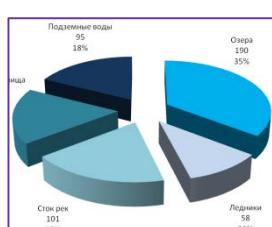
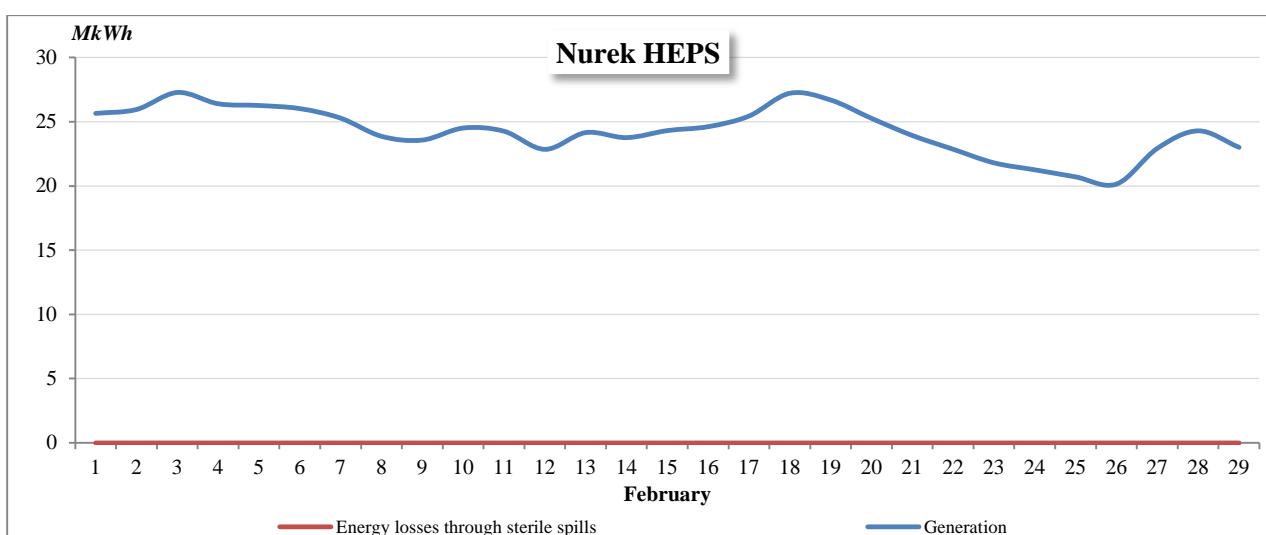
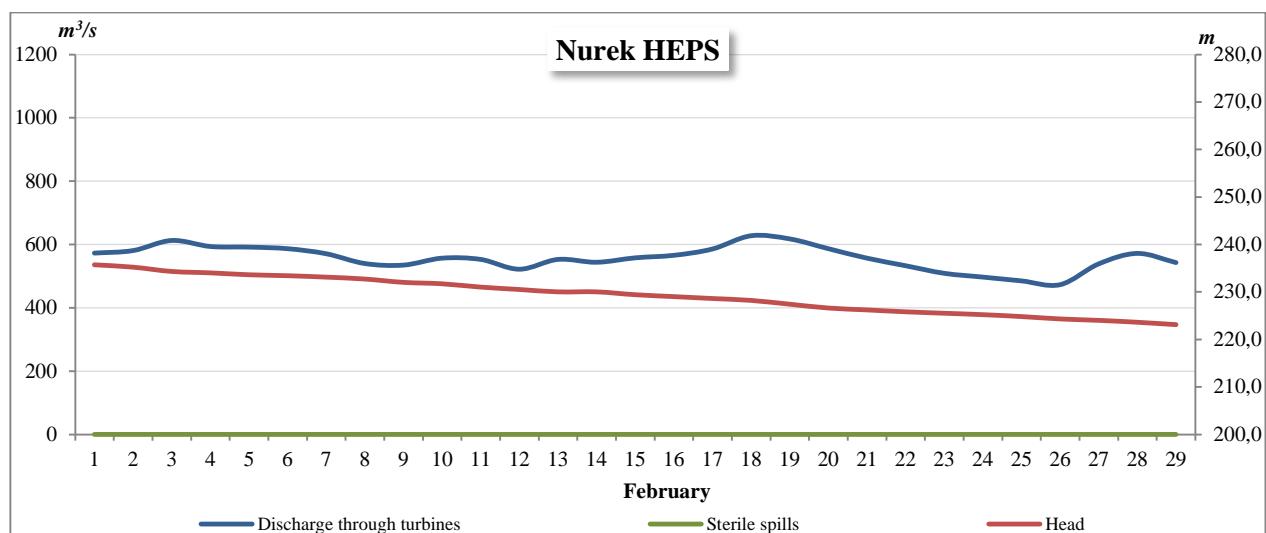
Water volume (W)

Object	Parameter	February			March			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
River runoff: Atamyrat g/s	W, Mm^3	Forecast	475	492	466.6	522.7	492.5	589.2
		Actual	530	609	699			
Water withdrawal: upstream of Atamyrat g/s	W, Mm^3	Forecast	400	479	497.4	631.7	708.2	808.5
		Actual	420	431	428			
Nurek reservoir /filling (+) or draw down (-)	W, Mm^3	Forecast	-281	-281	-257	-289	-272	-200
		Actual	-321	-306	-237			
Natural water resources at Atamyrat g/s	W, Mm^3	Forecast	595	691	707	865	929	1198
		Actual	630	733	890			
Lateral inflow: downstream of Atamyrat g/s	W, Mm^3	Forecast	76	87	84	93	90	96
		Actual	95	95	95			
Open channel losses: downstream of Atamyrat g/s	W, Mm^3	Forecast	-53	-40	-39	-46	-29	55
		Actual	131	233	258			
Available usable water resources	W, Mm^3	Forecast	723	819	830	1004	1047	1239
		Actual	595	595	717			

Reservoirs and HEPS

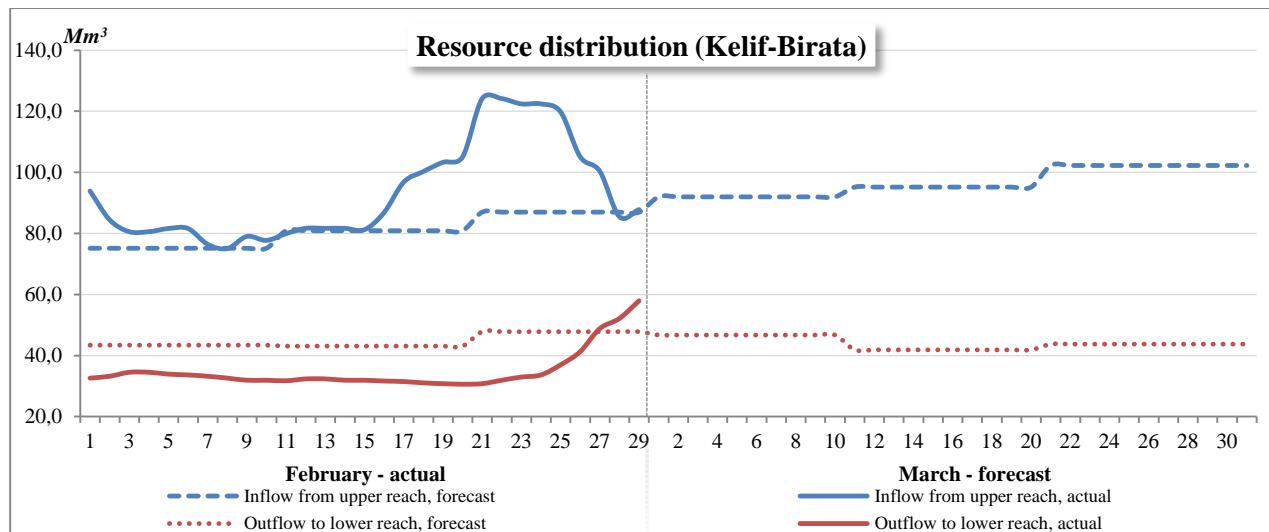
Reservoir	Location			Characteristics				
	Latitude	Longitude	Altitude above sea level, m	Length, km	Width, km	Water-surface area, km^2	Full volume, km^3	Full reservoir level, m
Nurek	38.40	69.47	864	70	1	98	10.50	910
Tuyamuyun	41.03	61.73	130	55	20	670	6.86	130




Inflow (I), Releases (R), Volume (W)

Reservoir	Parameter	February			March			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Nurek reservoir	I, Mm^3	Forecast	151	151	132.2	142.6	159.8	275.62
		Actual	176	187	170			
	R, Mm^3	Planned	432	432	388.8	432.0	432.0	475.2
		Actual	497	494	407			
Reservoirs of Tuyamuyun waterworks facility	W, Mm^3	Planned	7631	7351	7094	6614	6341	6142
		Actual	7542	7178	6870			
	I, Mm^3	Forecast	434	431	430.4	467.1	418.3	480.9
		Actual	333	316	367			
	R, Mm^3	Planned	337	458	466.6	518.4	475.2	313.6
		Actual	105	208	319			
	W, Mm^3	Planned	4480	4306	4075	3817	3458	3369
		Actual	4533	4408	4171			

Generation (**G**), Energy losses through sterile spills (**L**), Discharge through turbines (**Q**), Sterile spills (**R**), Head (**H**)

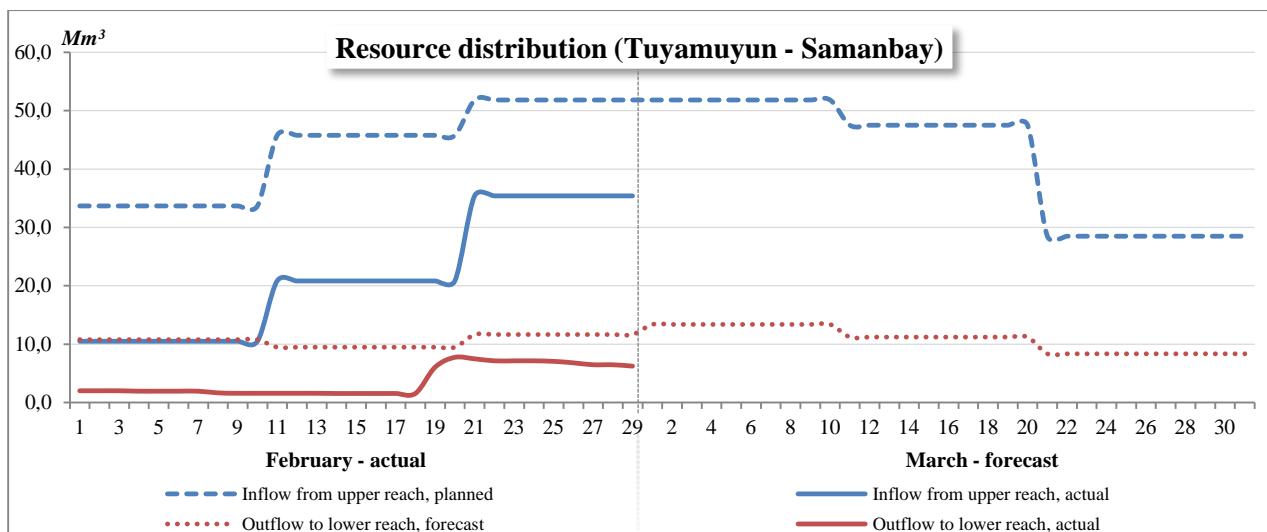
HEPS	Parameter	February			
		I ten-day	II ten-day	III ten-day	
Nurek	<i>G, M kWh</i>	Actual	254.9	248.7	201.0
	<i>L, M kWh</i>	Actual	0.0	0.0	0.0
	<i>Q, m³/s</i>	Actual	574.3	571.5	523.1
	<i>R, m³/s</i>	Actual	0.0	0.0	0.0
	<i>H, m</i>	Actual	233.6	229.1	224.7



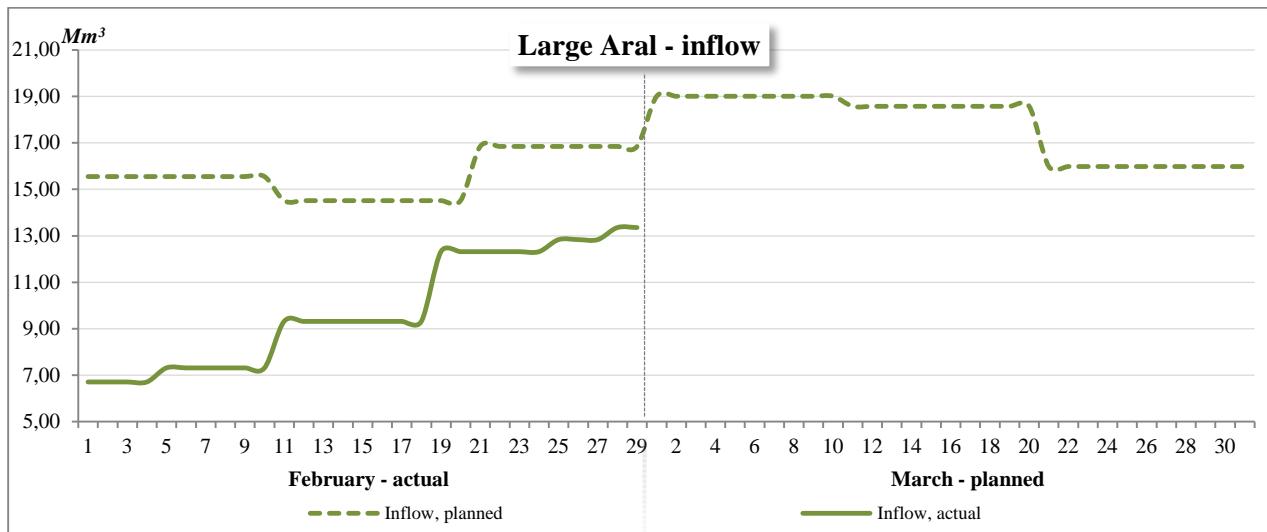
Water distribution

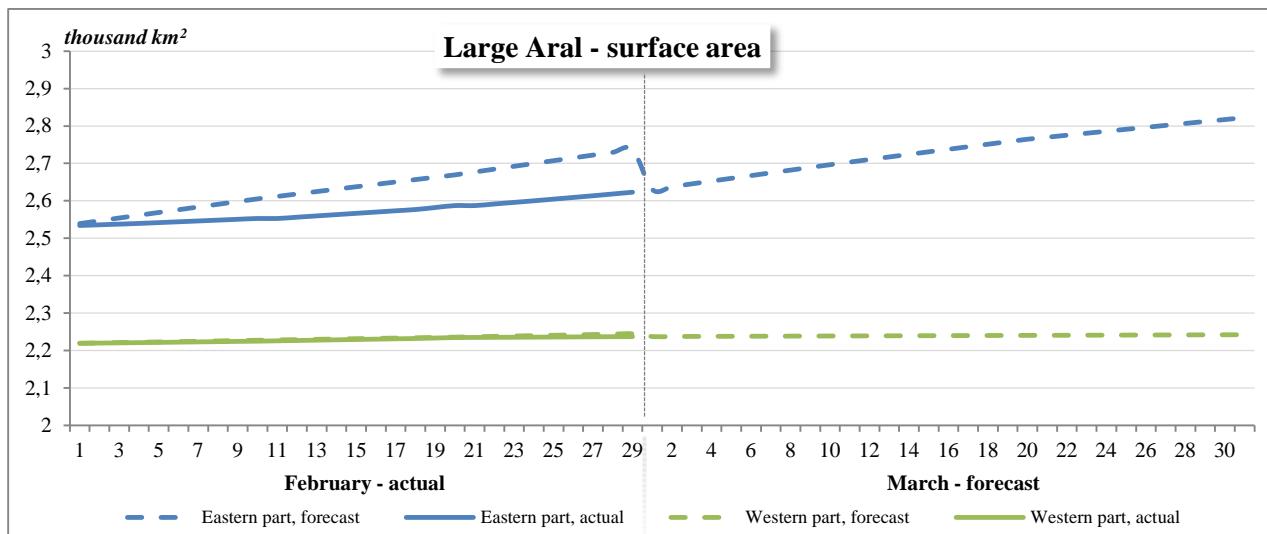
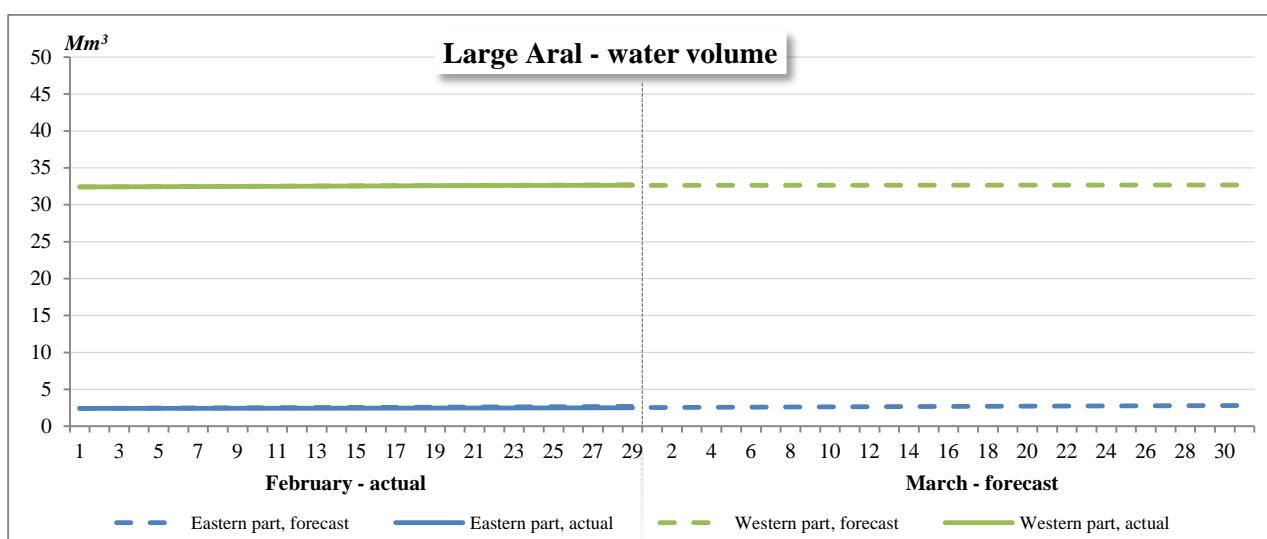
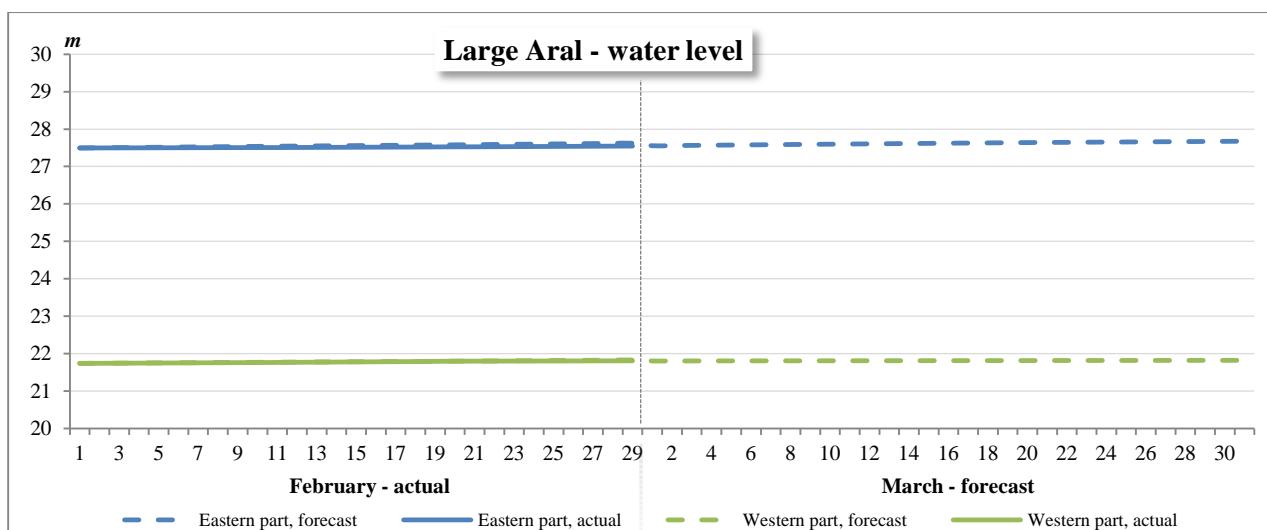
River reaches
Kelif gauging station (upstream of intake to Garagumdrya) – Birata gauging station (Darganata)
Tuyamuyun gauging station (tail water of Tuyamuyun waterworks facility) – Samanbay settlement
Large Aral Sea

Water volume (W)


Kelif - Birata	Parameter	February			March			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper reach	W, Mm ³	Forecast	752	809	783	920	952	1125
		Actual	811	898	991			
Lateral inflow	W, Mm ³	Forecast	76	87	84	93	90	96
		Actual	95	95	85			
Water withdrawal	W, Mm ³	Planned	447	506	475	592	654	707
		Actual	443	443	452			
Losses	W, Mm ³	Forecast	-53	-40	-39	-46	-29	55
		Actual	131	233	258			
Outflow to lower reach	W, Mm ³	Forecast	434	431	430	467	418	481
		Actual	333	316	367			

Water volume (W)


Tuyamuyun - Samanbay	Parameter	February			March			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper reach	W, Mm ³	Forecast	337	458	467	518	475	314
		Actual	105	208	319			
Lateral inflow	W, Mm ³	Forecast	0	0	0	0	0	0
		Actual	0	0	0			
Water withdrawal ¹	W, Mm ³	Planned	117	130	156	220	242	143
		Actual	27	46	152			
Losses	W, Mm ³	Forecast	112	233	206	164.2	121	79
		Actual	59.0	136	104			
Outflow to lower reach	W, Mm ³	Forecast	108	95	105	133.9	112.3	92.2
		Actual	19	26	62			




¹ Note: Including supply to the system of lakes and environmental water releases into canals

Water volume (W), Level (H), Surface area (S)

Large Aral Sea	Parameter	February			March			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow	W, Mm^3	Planned	155.52	145.15	151.63	190.08	185.76	175.82
		Actual	70.78	99.20	114.51			
Eastern part, water volume	W, Mm^3	Forecast	2.45	2.54	2.63	2.57	2.67	2.75
		Actual	2.41	2.45	2.49			
Eastern part, level	H, m	Forecast	27.52	27.56	27.60	27.58	27.62	27.66
		Actual	27.50	27.52	27.54			
Eastern part, area	$S, th.km^2$	Forecast	2.57	2.64	2.71	2.66	2.73	2.80
		Actual	2.54	2.57	2.60			
Western part, water volume	W, Mm^3	Forecast	32.46	32.57	32.68	32.65	32.67	32.69
		Actual	32.44	32.54	32.62			
Western part, level	H, m	Forecast	21.76	21.79	21.82	21.81	21.82	21.82
		Actual	21.75	21.78	21.80			
Western part, area	$S, th.km^2$	Forecast	2.22	2.23	2.24	2.24	2.24	2.24
		Actual	2.22	2.23	2.24			

Syr Darya River Basin

Actual Situation in February and Forecast for March

In February, the available usable water resources in the Syr Darya that were estimated as the sum of river flows based on inflow to Toktogul, Andizhan, and Charvak reservoirs plus lateral inflow to the rivers and minus losses amounted to 1,767 million m³, of which the inflow to the three upper reservoirs was 766 million m³ (124% of the norm and 112% of forecast). In March, the available usable water resources are expected in the amount of 2,752 Mm³, including 869 Mm³ of inflow to three upper reservoirs or 106% of the norm. According to UzHydromet's estimates, water content in the Syr Darya basin is expected within the following limits during the growing season (April-September): Naryn and Chirchik rivers - 90-100%, Karadarya River - 80-90%. SIC ICWC estimates (by averaging plausible scenarios) water content in the main rivers of the Syr Darya basin for the growing season as follows: Naryn River (inflow to Toktogul reservoir) - 94% of the norm, Karadarya River (inflow to Andizhan reservoir) - 66%, Chirchik River (inflow to Charvak reservoir) - 86%. The snow cover depth at weather stations in the Chirchik River basin was 50 - 92% of the norm by the beginning of February.

In February, inflow to the Toktogul reservoir was 396 million m³ or 91% of the expected volume, and water releases from the reservoir amounted to 1,549 million m³ or 91% of BWO Syr Darya's schedule. The water volume in the reservoir decreased from 13,578 million m³ at the beginning of month to 12,493 million m³ by the end of month (101% of the plan). The unrecorded inflow to the reservoir was detected in the amount of 30 Mm³. It is expected that in March the Toktogul reservoir will continue discharging water and by the end of month the water volume will be 11,199 million m³; the inflow to the reservoir would be 445 million m³, and water releases are planned at 1,738 million m³. In February, inflow to the Andizhan reservoir was 132 million m³ (121% of the forecast), and only 15 million m³ of water were released from the reservoir. The water volume changed from 714 million m³ at the beginning of month to 826 million m³ at the end of month. The reservoir accumulated water for the growing season by 112 Mm³. Water losses amounted to 5 Mm³. In March, inflow to the Andizhan reservoir is expected to be 144 million m³ and water releases will be also 144 million m³. Thus, the reservoir will be operated in transit regime, without changes in its volume. Inflow to the Bakhri Tojik reservoir was 2,137 million m³ (96% of the forecast), while water releases from the reservoir were in the amount of 2,253 million m³ (99% of the plan) in February. The water volume was 3,516 Mm³. The unrecorded inflow to the reservoir was detected from the balance method in the amount of 116 Mm³. In March, inflow to the Bakhri Tojik reservoir is expected to be 2,224 million m³, and 1,916 million m³ are to be discharged from the reservoir. Water will be accumulated in the reservoir approx. to 3,825 Mm³. Water was discharged from the Charvak reservoir from 784 million m³ to 579 million m³ in February. Inflow to the reservoir was 200 million m³, and water releases amounted to 364 million m³. Water losses in the reservoir amounted to 7% of water volume by the end of month. In March, the Charvak reservoir will be emptied and its volume will drop to 539 million m³ by the end of month. Inflow to the reservoir is expected in the amount of 281 million m³, while 321 Mm³ of water will be released. Inflow to the Shardara reservoir was 2,031 million m³ (76% of the forecast) in February. Water releases from the reservoir amounted to 1,100 million m³ (only 75% of BWO Syr Darya's schedule). The reservoir was emptied from 3,486 Mm³ to 4,337 Mm³. Water was not discharged from the reservoir into Arnasai. Water losses were estimated at 79 Mm³ (less than 2% of the water volume). In March, inflow to the Shardara reservoir is expected to increase to 2,267 million m³, while water releases will be planned at 1,941 million m³. The water volume will be 4,650 million m³ by the end of month. Water discharge into Arnasai is not planned for March. In February, the Koksarai reservoir was filled with water. Water diversion into the reservoir amounted to 816 million m³ (89%

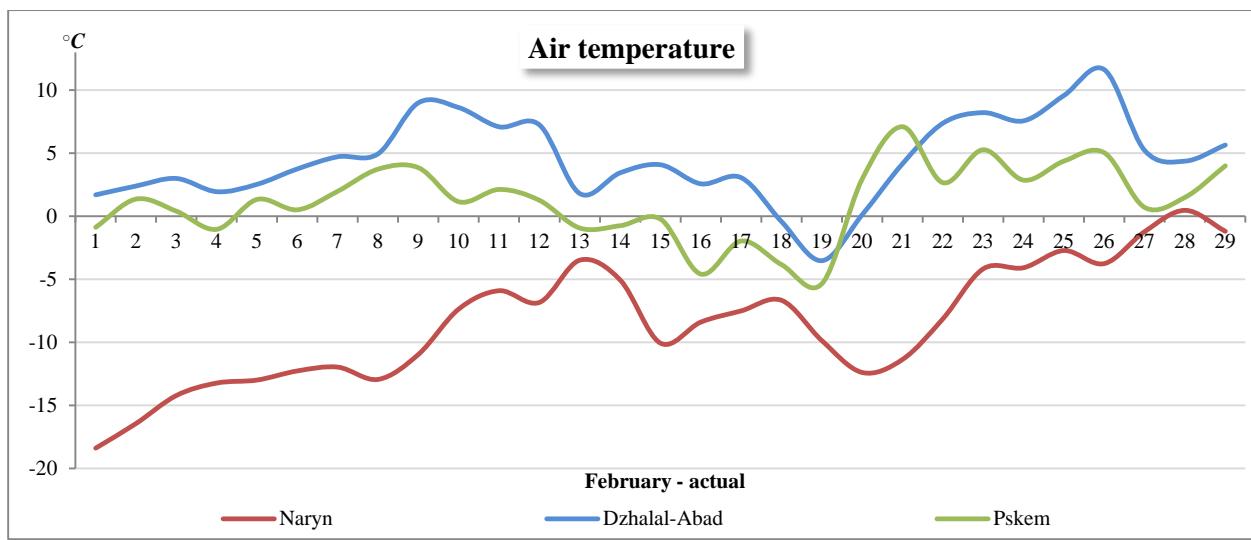
of the plan and 74% of river flow downstream of the Shardara reservoir). By the beginning of March, 1,183 Mm³ of water was accumulated in the reservoir. The reservoir did not discharge water into the river that month. Water losses in the reservoir are estimated at 27 million m³ (3% of the water volume). In March, it is planned to continue accumulating water in the Koksarai reservoir. The expected water diversion from the river is 957 million m³. No discharge is planned. The water volume in the reservoir will be augmented to 2,140 million m³ by the end of March.

In February, energy generation by the cascade of Naryn HEPS amounted to 1,366 million kWh, against planned 1,415 million kWh, including: Toktogul HEPS - 576 million kWh, when the plan was 624 million kWh. The average discharge through turbines of Toktogul HEPS was 618 m³/s, while the average head was 150 m. No sterile spills were observed. The plan of energy generation for March for the cascade of Naryn HEPS is set at 1,342 million kWh, including 605 million kWh for Toktogul HEPS. In February, the total generation at large HEPS of Uzbekistan amounted to 137 million kWh, of which: 89 million kWh at Charvak HEPS, 48 million kWh at Farkhad HEPS. The discharge at Charvak HEPS is 139 m³/s, and the head is 107 m; the discharge at Farkhad HEPS is 279 m³/s, and the head is 30 m. No energy was generated by Andizhan HEPS in February; discharge at this station was absent. During this period of time, the reservoir accumulated water for the growing season to cover possible water shortage that may take place because of expected low water content in the Karadarya River. Energy generation by HEPS of the Bakhri Tojik reservoir amounted to about 80 million kWh, and that by Shardara HEPS was 55 million kWh in February. Water discharge at HEPS of Bakhri Tojik was 832 m³/s, while the head was 19 m. Discharge at Shardara HEPS was 409 m³/s, and the head was 19 m.

In February, water was distributed unevenly along the Syr Darya River and its tributaries. In the reach of Toktogul HEPS – Uchkurgan (tail-water) the water shortage amounted to 34 million m³ or 21 % of the water withdrawal limit. Open channel losses were estimated at 188 million m³ (12% of river flow at the head of the reach). In the reach of Uchkurgan (tail-water) – Akjar g/s virtually no water shortage (1%) was recorded and open channel losses were not observed (unrecorded inflow of 1% of river flow at the head of the reach was detected). In the reach of Bakhri Tojik reservoir – Shardara reservoir water shortage was estimated at 24 million m³ (7%). In the lower reaches unrecorded inflow of 80 million m³ (7% of flow of the Syr Darya River downstream of the Shardara reservoir) was detected and no water shortage was observed. In February, flow along the Naryn – Syr Darya rivers changed as follows: discharge from the Toktogul reservoir – 1,549 million m³, discharge from Uchkurgan waterworks facility – 1,253 million m³, Akjar g/s (inflow to the Bakhri Tojik reservoir) – 2,137 million m³, Kyzylkishlak g/s – 2,251 million m³, inflow to the Shardara reservoir – 2,031 million m³, tail-water of the Shardara reservoir – 1,100 million m³, Samanbay g/s (inflow to the Northern Aral Sea) - 403 million m³. In March, water withdrawal from the river will be increased: to 489 million m³ in the first reach, to 36 million m³ in the second reach, and to 409 million m³ in the third reach. Inflow to the Northern Aral Sea is expected in the amount of 213 million m³.

In February, inflow to the Northern Aral Sea was 403 million m³. The water level in the sea varied within 41.97...42.10 m. The water surface area was 3.13...3.17 thousand km² and the water volume was 24.19...24.45 km³. The discharge from the Northern Aral Sea into the Large Aral Sea (Amu Darya Basin) was recorded in the amount of 127 million m³ in February. It is expected that in March inflow to the Northern Aral Sea will be 213 million m³, while discharge into the Large Aral Sea will be 197 million m³. The water level will be 42.2 m, the water surface area will be 3.19 thousand km², and the water volume will be 24.7 km³ by the end of month.

The sections below show daily and ten-day data on climate and water management (reservoirs, HEPS, water distribution).

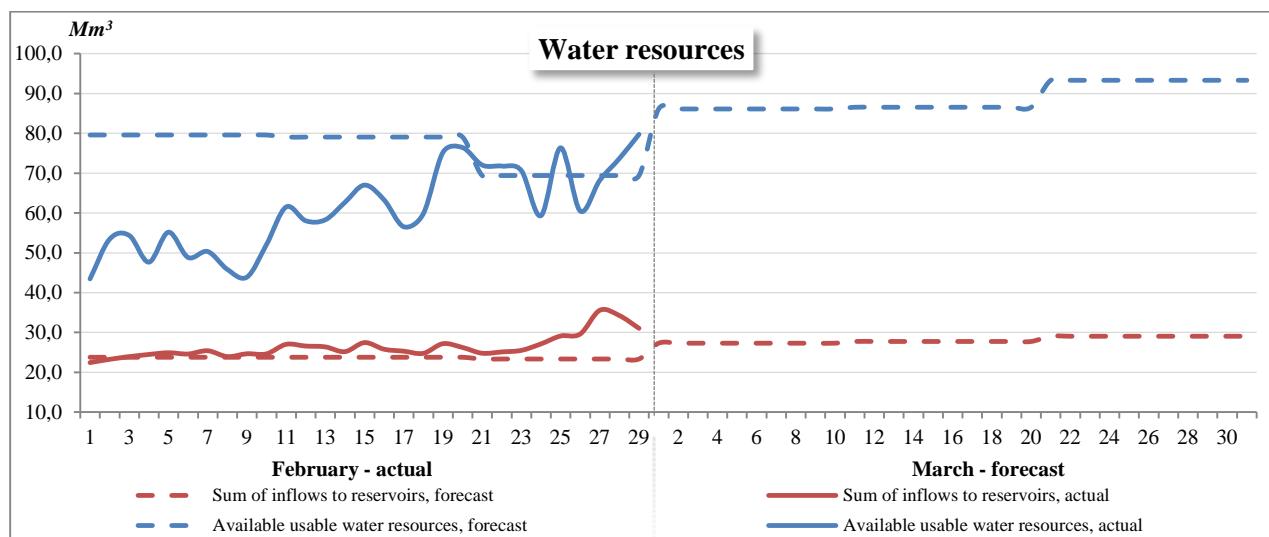


Climate

Weather station Riverhead	Location		
	Latitude	Longitude	Altitude above sea level, m
Naryn	41.43	76.00	2041
Dzhalal-Abad	40.92	72.95	765
Pskem	41.90	70.37	1258

Air temperature (T)

Station	Parameter	February			March		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Naryn	T. °C	Forecast	- 14.00	- 8.00	- 5.00	- 4.00	- 1.00
		Actual	- 13.08	- 7.62	- 4.02		2.00
Dzhalal-Abad	T. °C	Forecast	4.00	3.00	6.00	8.00	11.00
		Actual	4.26	2.54	7.08		14.00
Pskem	T. °C	Forecast	- 1.00	- 1.00	2.00	4.00	6.00
		Actual	1.23	- 1.14	3.71		7.00

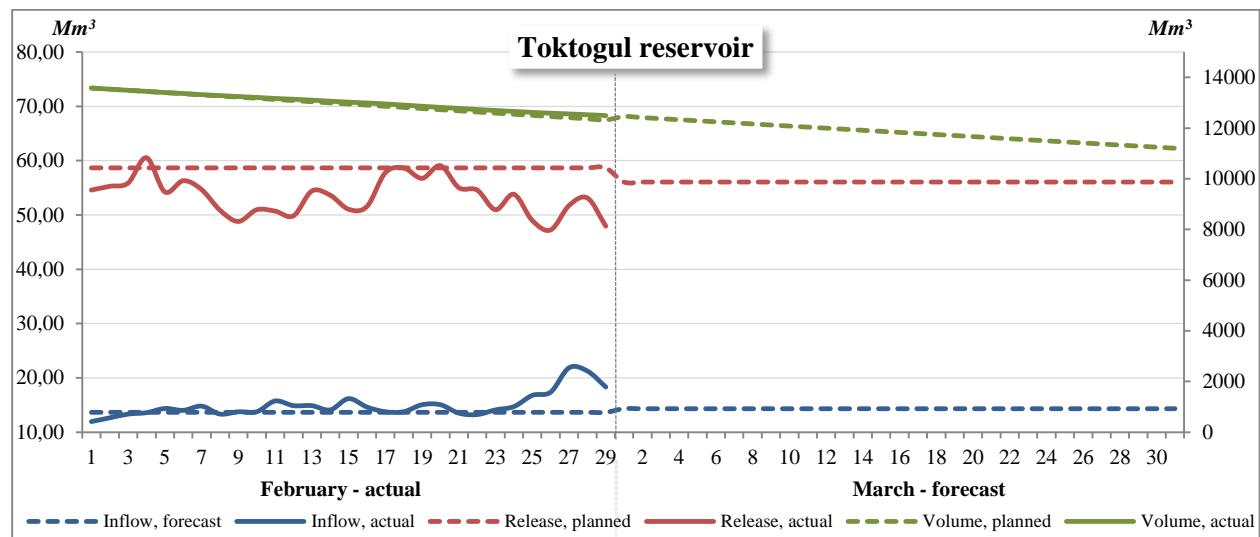


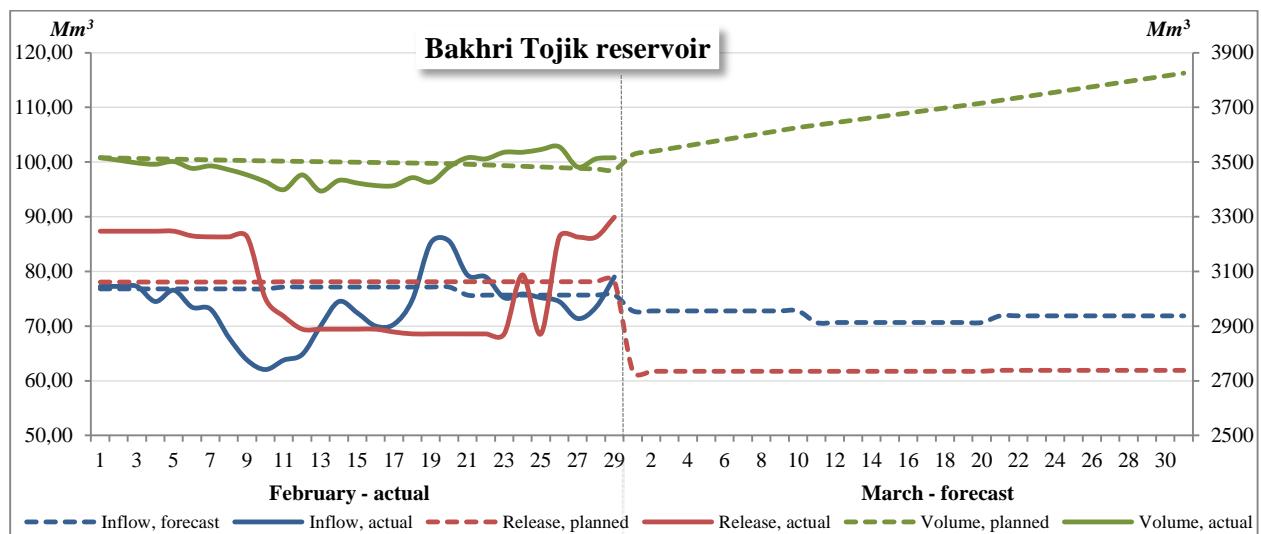
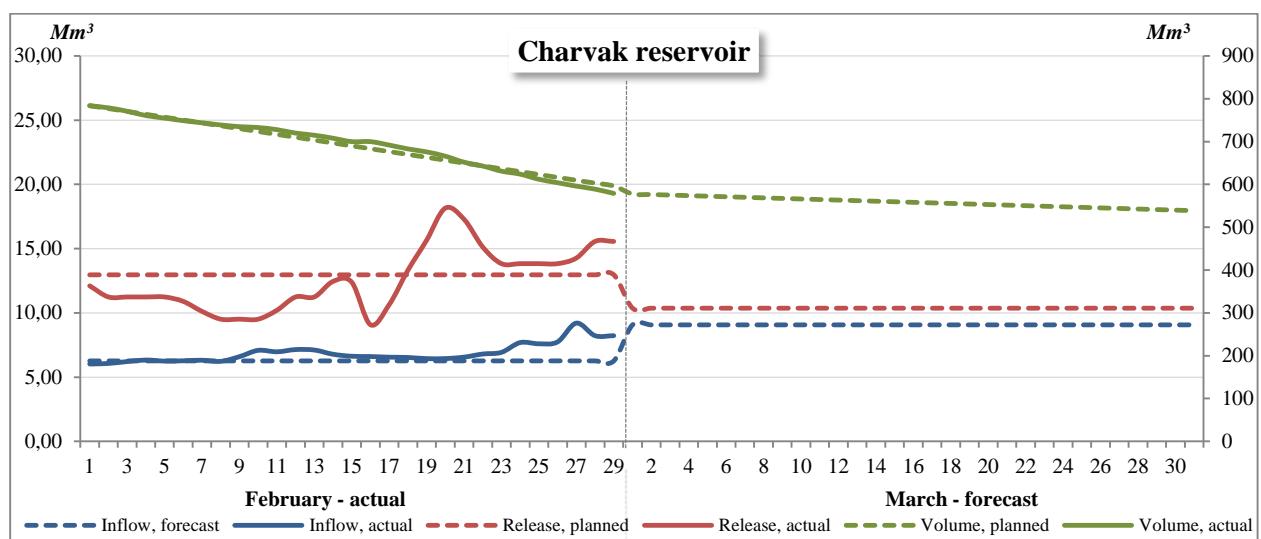
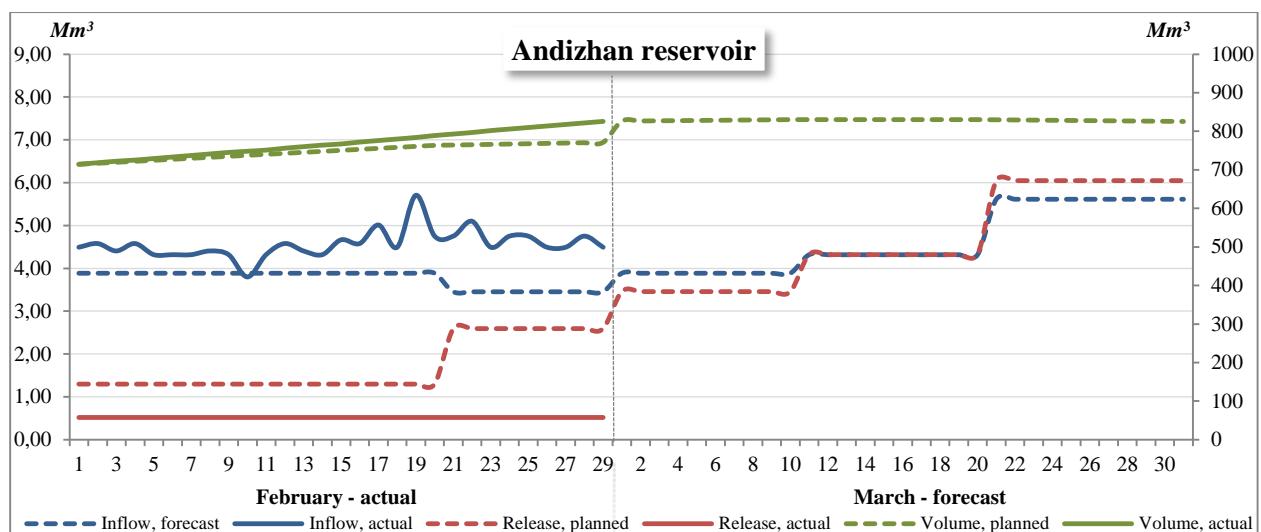
Water resources

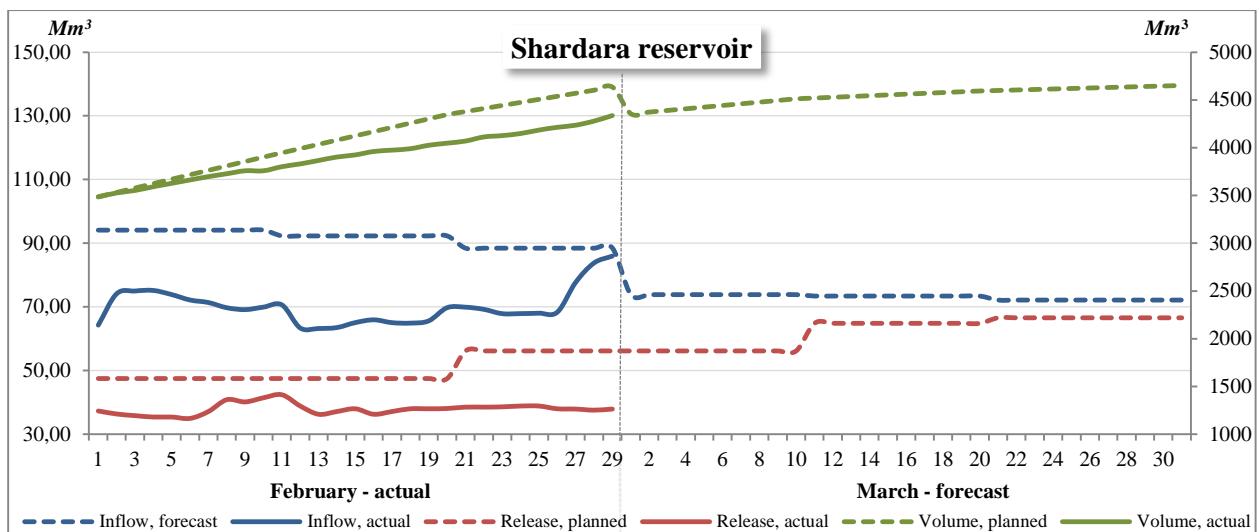
Object
Naryn River (inflow to Toktogul)
Karadarya River (inflow to Andizhan)
Chirchik River (inflow to Charvak)
Syr Darya River (up to Shardara)

Water volume (W)

Object	Parameter	February			March		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow to Toktogul reservoir	W, Mm ³	Forecast	137	137	122.9	143	143
		Actual	135	148	151.0		
Inflow to Andizhan reservoir	W, Mm ³	Forecast	39	39	31.1	39	43
		Actual	44	47	42.1		
Inflow to Charvak reservoir	W, Mm ³	Forecast	63	63	56.3	91	91
		Actual	63	67	69.0		
Sum of inflows to reservoirs	W, Mm ³	Forecast	238	238	210.3	273	277
		Actual	242	262	262.1		
Lateral inflow up to Shardara	W, Mm ³	Forecast	567	562	424.1	600	600
		Actual	263	387	380.2		
Losses	W, Mm ³	Forecast	10	10	9.7	12	12
		Actual	10	10	9.7		
Available usable water resources	W, Mm ³	Forecast	796	791	624.6	861	865
		Actual	495	639	632.6		

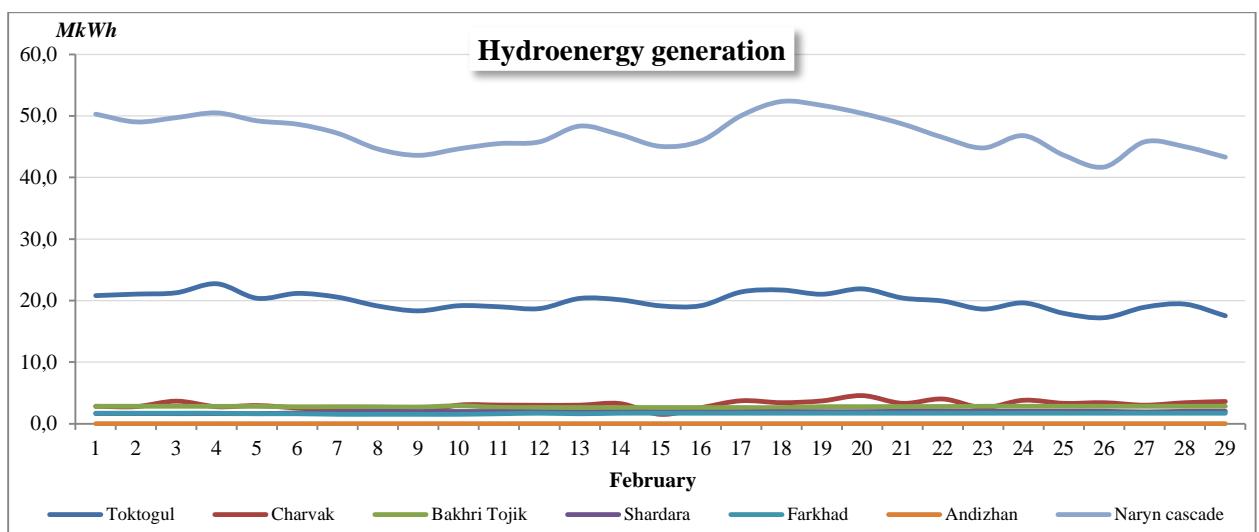


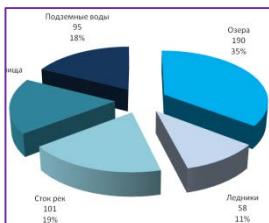



Reservoirs and HEPS


Reservoir	Location			Characteristics				
	Latitude	Longitude	Altitude above sea level, m	Length, km	Width, km	Water-surface area, km²	Full volume, km³	Full reservoir level, m
Toktogul	41.80	72.87	880	65	12	284	19.50	215
Andizhan	40.77	73.11	900	36	1.5-12	56	0.19	905
Bakhri Tojik	40.29	70.07	344	75	20	520	4.16	348
Charvak	41.63	70.03	869	15	3	37	1.90	906
Shardara	41.20	67.99	250	80	25	783	5.70	252

Inflow (I), Releases (R), Volume (W)

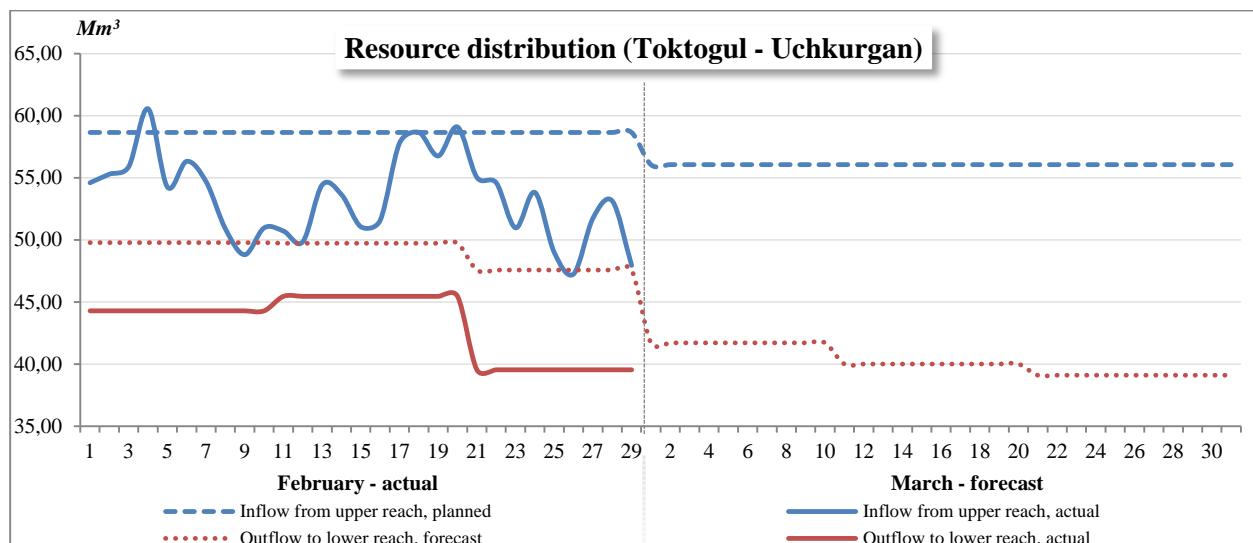
Reservoir	Parameter	February			March			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Toktogul reservoir	<i>I, Mm³</i>	Forecast	136.51	136.51	122.86	143.42	143.42	157.77
		Actual	135.30	147.83	151.03			
	<i>R, Mm³</i>	Planned	586.66	586.66	527.99	560.74	560.74	616.80
		Actual	542.33	543.63	463.54			
Andizhan reservoir	<i>W, Mm³</i>	Planned	13173	12723	12318	12076	11658	11199
		Actual	13208	12815	12493			
	<i>I, Mm³</i>	Forecast	38.88	38.88	31.10	38.88	43.20	61.78
		Actual	43.55	46.83	42.08			
Charvak reservoir	<i>R, Mm³</i>	Planned	12.96	12.96	23.33	34.56	43.20	66.53
		Actual	5.18	5.18	4.67			
	<i>W, Mm³</i>	Planned	737	763	771	830	830	826
		Actual	748	789	826			
Bakhri Tojik reservoir	<i>I, Mm³</i>	Forecast	62.56	62.56	56.31	90.65	90.65	99.72
		Actual	63.39	67.22	68.96			
	<i>R, Mm³</i>	Planned	129.60	129.60	116.64	103.68	103.68	114.05
		Actual	106.53	124.27	133.06			
Shardara reservoir	<i>W, Mm³</i>	Planned	724	657	596	566	553	539
		Actual	733	666	579			
	<i>I, Mm³</i>	Forecast	767.87	771.25	680.85	727.53	706.37	790.36
		Actual	723.00	731.29	682.73			
Shardara reservoir	<i>R, Mm³</i>	Planned	780.62	781.14	703.11	617.33	617.33	680.96
		Actual	857.17	693.61	702.41			
	<i>W, Mm³</i>	Planned	3505	3495	3472	3626	3715	3825
		Actual	3428	3482	3516			





Generation (G), Energy losses through sterile spills (L), Discharge through turbines (Q), Sterile spills (R), Head (H)

HEPS	Parameter	February			
		I ten-day	II ten-day	III ten-day	
Naryn cascade	$G, M kWh$	Actual	477.5	482.2	406.2
	$G, M kWh$	Actual	204.4	202.4	169.4
Toktogul	$Q, m^3/s$	Actual	628.0	629.2	594.6
	H, m	Actual	152.0	150.4	148.8
Andizhan	$G, M kWh$	Actual	0.0	0.0	0.0
	$Q, m^3/s$	Actual	0.0	0.0	0.0
	H, m	Actual	95.0	95.0	95.0
Bakhri Tojik	$G, M kWh$	Actual	27.9	26.4	25.3
	$Q, m^3/s$	Actual	834.9	830.0	830.0
	H, m	Actual	19.7	18.7	19.9
Farkhad	$G, M kWh$	Actual	16.0	16.8	15.3
	$Q, m^3/s$	Actual	266.0	282.8	288.0
	H, m	Actual	30.6	30.6	30.6
Charvak	$G, M kWh$	Actual	26.7	31.7	30.4
	$Q, m^3/s$	Actual	116.7	143.6	157.9
	H, m	Actual	109.9	106.9	102.7
Shardara	$G, M kWh$	Actual	17.8	19.0	17.9
	$Q, m^3/s$	Actual	410.0	415.0	400.0
	$G, M kWh$	Actual	18.9	19.1	19.5

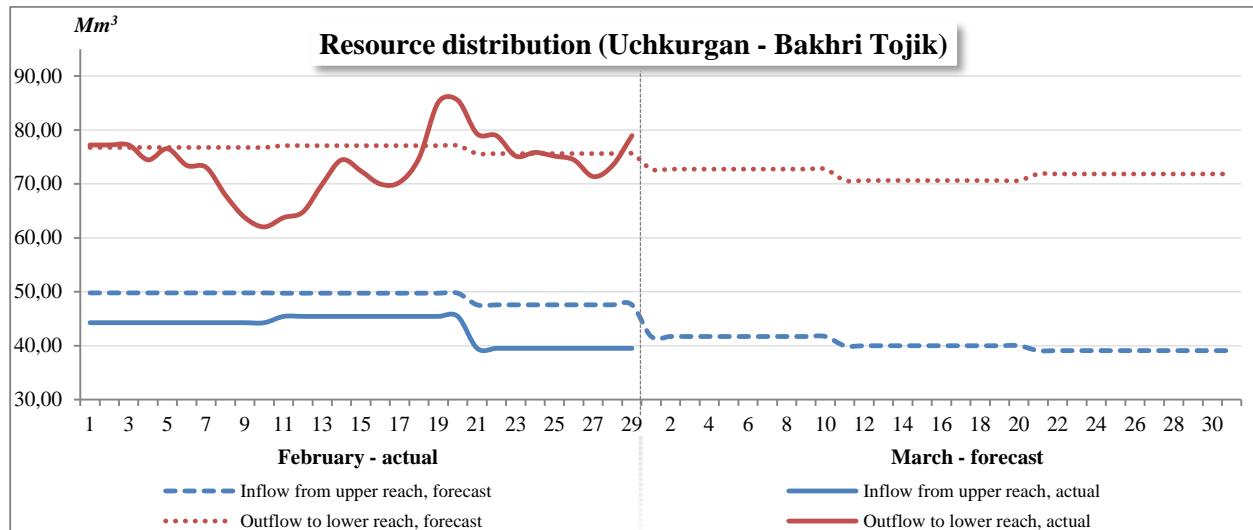


Water distribution

River reach						
Naryn River: tail water of Toktogul reservoir – Uchkurgan waterworks facility						
Naryn River: Uchkurgan waterworks facility - Syr Darya River: inflow to Bakhri Tojik reservoir						
Syr Darya River: tail water of Bakhri Tojik reservoir – inflow to Shardara reservoir						
Syr Darya River: tail water of Shardara reservoir – inflow to Northern Aral Sea (Karateren settlement)						
Northern Aral Sea						

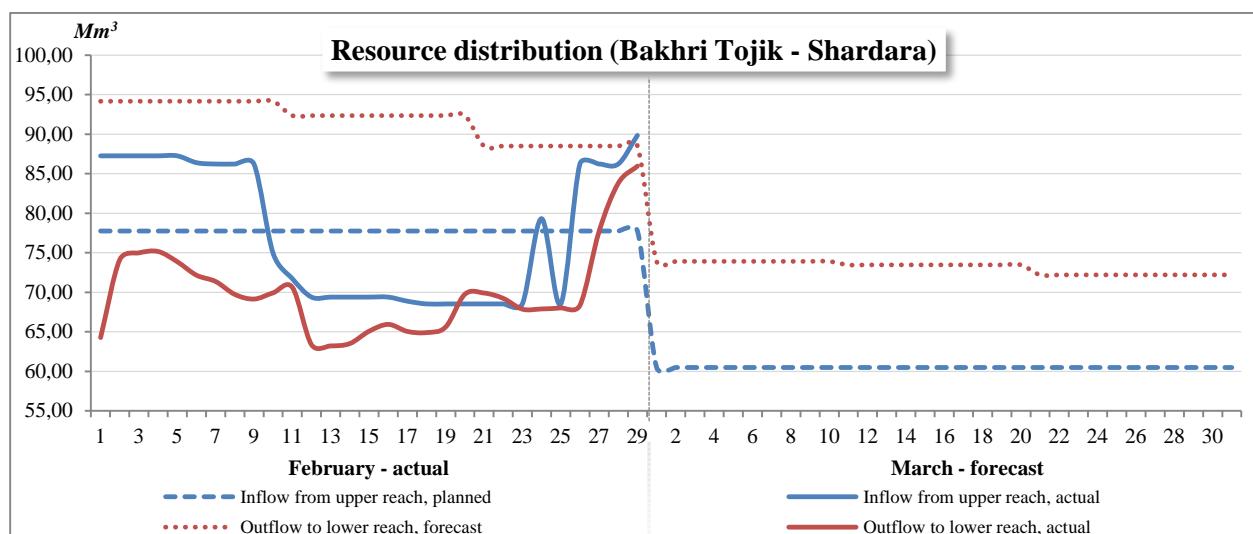
Water volume (W)

Toktogul - Uchkurgan	Parameter	February			March		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow from upper reach	W, Mm ³	Planned	586.66	586.66	527.99	560.74	560.74
		Actual	542.33	543.63	463.54		
Lateral inflow ²	W, Mm ³	Forecast	17.90	17.90	16.11	25.38	25.38
		Actual	13.82	23.76	12.27		
Water withdrawals	W, Mm ³	Planned	59.10	59.62	73.08	143.08	160.17
		Actual	48.17	44.29	65.50		
Losses	W, Mm ³	Forecast	47.52	47.52	42.77	25.92	25.92
		Actual	65.18	68.64	54.50		
Outflow to lower reach ³	W, Mm ³	Forecast	497.94	497.42	428.25	417.12	400.03
		Actual	442.80	454.46	355.80		


Water volume (W)

Uchkurgan – Bakhri Tojik	Parameter	February			March		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow from upper reach	W, Mm ³	Forecast	497.94	497.42	428.25	417.12	400.03
		Actual	442.80	454.46	355.80		
Lateral inflow	W, Mm ³	Forecast	313.32	315.99	281.35	352.07	348.00
		Actual	316.58	300.84	270.82		

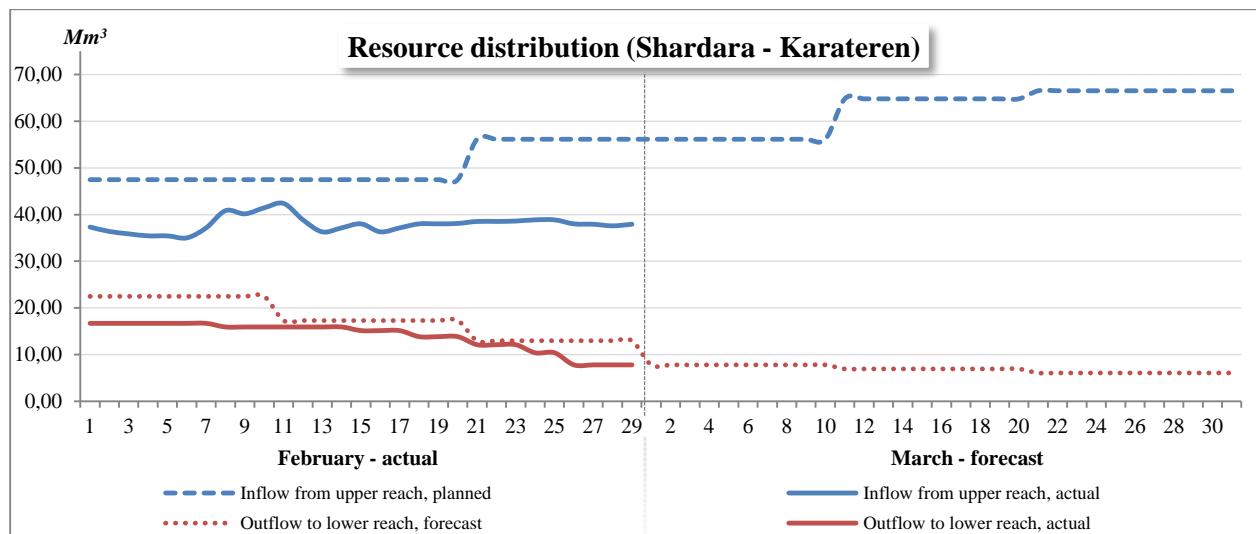
² Incl. Karasu left and right


³ Uchkurgan waterworks facility

Water withdrawals	W, Mm ³	Planned	13.39	2.16	1.75	11.66	11.66	12.83
		Actual	11.06	4.60	2.72			
Losses	W, Mm ³	Forecast	30.00	40.00	27.00	30.00	30.00	33.00
		Actual	25.32	19.41	-58.83			
Outflow to lower reach ⁴	W, Mm ³	Forecast	767.87	771.25	680.85	727.53	706.37	790.36
		Actual	723.00	731.29	682.73			

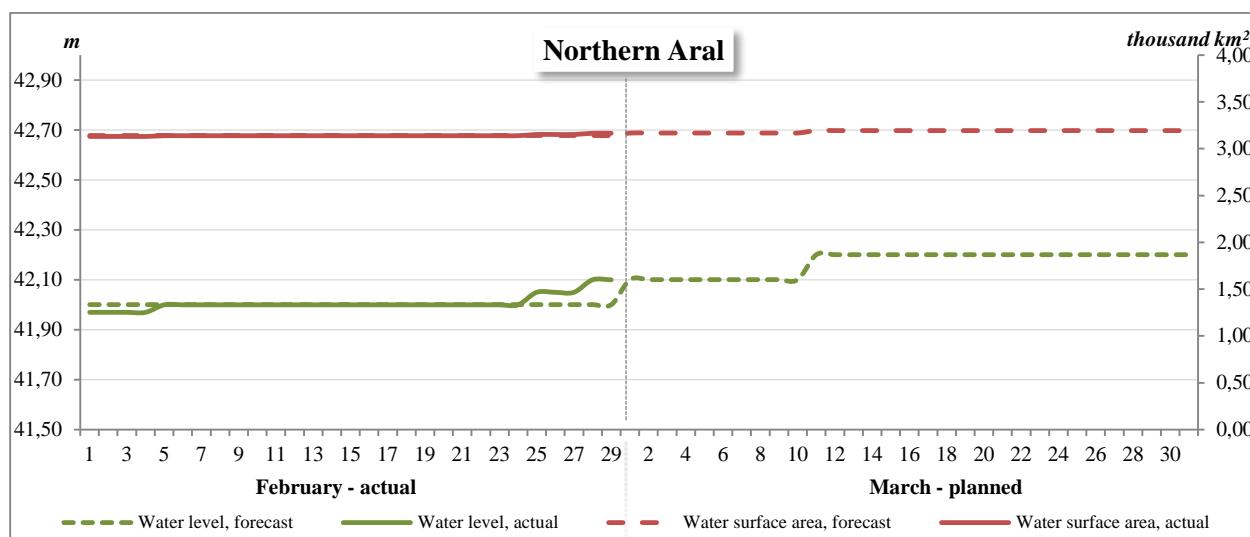
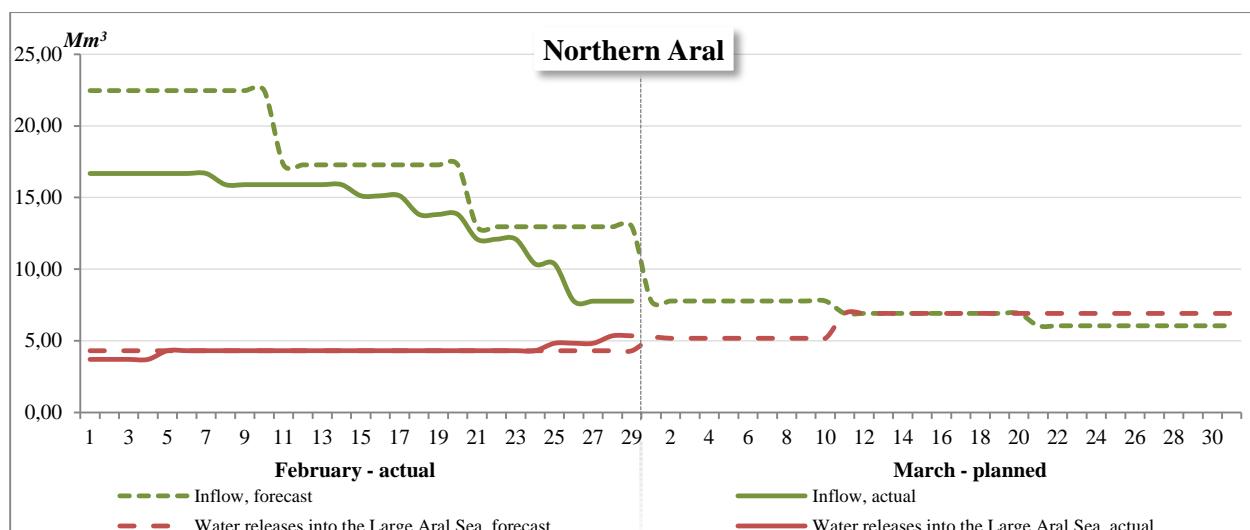
Water volume (W)

Bakhri Tojik - Shardara	Parameter	February			March		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow from upper reach ⁵	W, Mm ³	777.60	777.60	699.84	604.80	604.80	665.28
		856.31	693.01	701.91			
Lateral inflow	W, Mm ³	325.87	327.71	268.05	320.97	305.90	329.26
		184.72	208.20	236.91			
Water withdrawals	W, Mm ³	111.97	131.93	126.52	136.86	126.23	145.51
		112.06	121.83	112.42			
Losses	W, Mm ³	50.00	50.00	45.00	50.00	50.00	55.00
		214.14	122.23	167.64			
Outflow to lower reach	W, Mm ³	941.50	923.38	796.37	738.91	734.47	794.04
		714.83	657.15	658.77			



⁴ Akdzhar g/s

⁵ Kyzylkishlak g/s



Water volume (W)

Shardara - Karateren	Parameter	February			March			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper reach	W, Mm ³	Planned	475.20	475.2	505.4	561.60	648.00	732
		Actual	375.06	380.3	344.9			
Lateral inflow	W, Mm ³	Forecast	38.64	73.2	3	11.76	16.72	19
		Actual	8.01	16.4	15			
Filling (+), draw down (-) of Koksarai reservoir	W, Mm ³	Planned	-259.2	-345.6	-311	-345.6	-345.6	-266
		Actual	-263.5	-285.1	-268			
Water withdrawals	W, Mm ³	Planned	0.0	0.0	0	0.0	0.0	0
		Actual	0.0	0.0	0			
Losses	W, Mm ³	Forecast	30.0	30.0	81	150.0	250.0	418
		Actual	-44.9	-38.8	4			
Outflow to lower reach	W, Mm ³	Forecast	224.6	172.8	117	77.8	69.1	67
		Actual	164.4	150.4	88			

Water volume (W), Level (H), Surface area (S)

Northern Aral	Parameter	February			March			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow	W, Mm ³	Forecast	224.64	172.80	116.64	77.76	69.12	66.53
		Actual	164.42	150.42	88.13			
Water volume	W, Mm ³	Forecast	24.29	24.48	24.62	24.48	24.56	24.63
		Actual	24.24	24.36	24.43			
Water level	H, m	Forecast	42.00	42.00	42.00	42.10	42.20	42.20
		Actual	41.99	42.00	42.04			
Water surface area	S, th.km ²	Forecast	3.14	3.14	3.14	3.17	3.19	3.19
		Actual	3.14	3.14	3.15			
Water releases into the Large Aral Sea	W, Mm ³	Forecast	43.20	43.20	38.88	51.84	69.12	76.03
		Actual	40.78	43.20	42.51			

Information sources

Basin Water Organization “Amu Darya”
Basin Water Organization “Syr Darya”

Aral–Syrdarya Basin Water Authority
Coordination Dispatch Center “Energy”

Website of the Center of Hydrometeorological Service (Uzbekistan) <http://meteo.uz>
Central Asia Water and Ecological Knowledge Portal <http://cawater-info.net>
Website “Weather and Climate” <http://www.pogodaiklimat.ru>

For detailed analysis of water-related situation by SIC ICWC, please, visit the CAWATER-info portal
<http://cawater-info.net/analysis/index.htm>